

Introduction to GLOBE Weather

Sherry S. Herron, Ph.D.

Xavier University New Orleans

December 7, 2019

Global
Learning and
Observations to
Benefit the
Environment

3 units build from local to global perspectives in a storyline approach

Overview

Extreme
rainfall events
impact a From Cloud
community to Storm

Short-lived, isolated storm

A Front Headed Your Way

Stormy
weather
over a large
region for
many days

Snow Day?

Applying our learning to other types of storms

Worldwide Weather

How and why storms move around the Earth

© 2019 University Corporation for Atmospheric Research. All Rights Reserved

BSCS 5E Learning Cycle

Guided Inquiry

ENGAGE

 Motivation
 – stimulate interest, create curiosity, and link what students already know (i.e. prior knowledge) to the new concepts.

EXPLORE

• Question(s) and work provided for students to make predictions and discover answers. Students collect data (the more authentic, the better) in order to answer the question(s).

EXPLAIN

• Data processing- checking information and interpreting results; addressing misconceptions; linking to scientific terms and theories.

ELABORATE

 Students apply the new knowledge to investigate further and practice the new knowledge.

EVALUATE

 Closure- summarize, review, relate new information to link with previous knowledge. Students apply their new knowledge and skills in performance-based assessments. • 5-week research-based curriculum that covers short-lived to long-term and global scales of weather with assessments, videos, and student activity sheets

Scope & Sequence

- Anchor: An Unexpected Storm: 1 lesson, 4 pages
- Learning Sequence 1: From Cloud to Storm: 6 lessons, 25 pages
- Learning Sequence 2: A Front Headed Your Way: 5 lessons, 19 page
- Learning Sequence 3: Worldwide Weather: 4 lessons, 16 pages
- Culminating Task: Snow Day? 3 Challenges, 11 pages

• 3 Performance Expectations (**Practices**)

4 Science and Engineering Practices

5 Disciplinary Core Ideas

• 3 Crosscutting Concepts

Protocols

- Atmosphere
- Hydrosphere
- Soils/Pedosphere
- Biosphere

E-Trainings:

https://www.globe.gov/get-trained/protocol-etraining

Face-to-face Trainings

GLOBE Observer App

GLOBE INTERNATIONAL VIRTUAL SCIENCE SYMPOSIUM

https://www.globe.gov/science-symposium

U.S. Regional Student Research Symposia

https://www.globe.gov/web/united-states-of-america/home/student-research-symposia

Visit the GLOBE Weather's website to:

- Download the teacher guides, student activity sheets, and assessments.
- View and download powerpoint slides for each lesson.
- Access links to videos.
- Join the GLOBE Weather teacher network.
- Get tips on navigating the GLOBE Weather curriculum.

GLOBEWEATHERCURRICULUM CRG

GLOBE Weather was developed with support from NASA and utilizing data and science protocols from the GLOBE Program.

"I really liked this phenomenabased approach...The students enjoyed the time-lapse videos and then LOVED building their own thunderstorm simulation."

-2018 Pilot Teacher

